Diagnostic flowchart for adult ataxias

Published by ERN-RND: 11th February 2019
Introduction to the European Reference Network for Rare Neurological Diseases (ERN-RND):

ERN-RND is a European Reference Network established and approved by the European Union. ERN-RND is a healthcare infrastructure which focuses on rare neurological diseases (RND). The three main pillars of ERN-RND are (i) network of experts and expertise centres, (ii) generation, pooling and dissemination of RND knowledge, and (iii) implementation of e-health to allow the expertise to travel instead of patients and families.

ERN-RND unites 32 of Europe’s leading expert centres in 13 Member States and includes highly active patient organizations. Centres are located in Belgium, Bulgaria, Czech Republic, France, Germany, Hungary, Italy, Lithuania, Netherlands, Poland, Slovenia, Spain and the UK.

The following disease groups are covered by ERN-RND:

- Ataxias and Hereditary Spastic Paraplegias
- Atypical Parkinsonism and genetic Parkinson’s disease
- Dystonia, Paroxysmal Disorder and Neurodegeneration with Brain Ion Accumulation
- Frontotemporal Dementia
- Huntingtons’ Disease and other Choreas
- Leukodystrophies

Specific information about the network, the expert centres and the diseases covered can be found at the networks web site www.ern-rnd.eu.

Recommendation for clinical use:

The European Reference Network for Rare Neurological Diseases developed the Diagnostic Flowchart for adult ataxias to help guide the diagnosis. The Reference Network recommends the use of this Diagnostic Flowchart.
Methodology

The development of the Diagnostic Flowchart was done by the Disease group for Ataxia and Hereditary Spastic Paraplegias of ERN-RND.

Disease group for Ataxia and Hereditary Spastic Paraplegias:

Disease group coordinators:

Caterina Mariotti\(^{16}\); Rebecca Schuele-Freyer\(^{14}\)

Disease group members:

Healthcare professionals:

Segolene Ayme\(^{1}\); Enrico Bertini\(^{2}\); Kristl Claeys\(^{3}\); Maria Teresa Dotti\(^{4}\); Alexandra Durr\(^{1}\); Antonio Federico\(^{5}\); Josep Gámez\(^{5}\); Paola Giunti\(^{6}\); David Gómez-Andrés\(^{7}\); Kinga Hadziev\(^{7}\); York Hellenbroich\(^{8}\); Jaroslav Jerabek\(^{9}\); Jiri Klempir\(^{11}\); Thomas Klockgether\(^{12}\); Thomas Klopstock\(^{13}\); Norbert Kovacs\(^{7}\); Ingeborg Krägeloh-Mann\(^{14}\); Berry Kremer\(^{15}\); Alfons Macaya\(^{8}\); Bela Melegh\(^{7}\); Maria Judit Molnar\(^{8}\); Isabella Moroni\(^{16}\); Alexander Münchau\(^{8}\); Esteban Muñoz\(^{17}\); Lorenzo
Patient representatives:
Lori Renna Linton, Mary Kearney, Cathalijne van Doorne

1 Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, France: Reference Centre for Rare Diseases 'Neurogenetics'; 2 Pediatric hospital Bambino Gesù, Rome, Italy; 3 University Hospitals Leuven, Belgium; 4 AOU Siena, Italy; 5 Hospital Universitari Vall d’Hebron, Spain; 6 University College London Hospitals NHS Foundation Trust, United Kingdom; 7 University of Pécs, Hungary; 8 Semmelweis University, Hungary; 9 Universitätsklinikum Schleswig-Holstein, Germany; 9 Motol University Hospital, Czech Republic; 10 Patient representative; 11 General University Hospital in Prague, Czech Republic; 12 Universitätsklinikum Bonn, Germany; 13 Klinikum der Universität München, Germany; 14 Universitätsklinikum Tübingen, Germany; 15 University Medical Center Groningen, Netherlands; 16 Foundation IRCCS neurological institute Carlo Besta – Milan, Italy; 17 Hospital Clinic i Provincial de Barcelona y Hospital de Sant Joan de Déu, Spain; 18 University Medical Centre Ljubljana, Slovenia; 19 Université libre de Bruxelles, Belgium; 20 University Hospital in Krakow, Poland; 21 Stichting Katholieke Universiteit, doing business as Radboud University Medical Center Nijmegen, Netherlands.

Flowchart development process:
- Development of flowchart – June – November 2017
- Discussion/Revision in ERN-RND disease group – November 2017 – June 2018
- Consent on diagnostic flowchart: 30 November 2018
- Consent on document by whole disease group – 05/02/2019
Diagnostic flowcharts – Ataxias

Exclusion of acquired causes*** in case of negative family history, (sub)acute onset, specific medical history, etc.
***Common Acquired Causes: auto immune diseases (MS, sarcoidosis, celiac disease, etc), toxic reaction, head trauma, cerebral palsy, tumor, stroke, infections, vitamin deficiency, paraneoplastic syndromes

CHECK for presence/absence: (1) peripheral neuropathy-sensory neuronopathy; (2) Cerebellar/brainstem/cerebral MRI findings

Autosomal Recessive

- FRDA

 if NGS NOT available

 Check:
 1) alphafetoprotein, vitamin E, albumin, cholesterol, lactate, ceruloplasmin, phytanic acid, VLCF, CK,
 2) urine organic acids, plasma amino acids, lysosomal enzymes, cholesterol, oxysterols
 3) MRI/OCT for ARSACS
 4) Cataract
 5) Ocular Telangiectasia

 abnormal

 Candidate gene analysis

 test ADCK3

 SPG7

 if NGS NOT available

Sporadic

- FRDA, SCA1, 2, 3, 6, 7, 17, DRPLA
- Male onset >50 yrs FXTAS

 Negative and MSA-C unlikely

 if NGS NOT available

 if it helps interpreting NGS results.

 NGS Panel, WES, WGS

Autosomal Dominant

- SCA1, 2, 3, 6, 7, 17, DRPLA

 negative

 if NGS NOT available

 Test for rare repeats/rearrangements (SCA10, 12, 36 SCA15) and frequent SCAs caused by conventional mutations

 Test KCNA1 CACNA1A
ABBREVIATIONS

ADCK3: aarF domain-containing protein kinase 3

ARSACS: autosomal recessive spastic ataxia of Charlevoix-Saguenay

CACNA1A: Calcium Voltage-Gated Channel Subunit Alpha1 A

CK: creatine kinase

DRPLA: Dentatorubral-pallidoluysian atrophy

FRDA: friedreich ataxia

FXTAS: fragile X-associated tremor/ataxia syndrome

KCNA1: Potassium Voltage-Gated Channel Subfamily A Member 1

MRI: Magnetic Resonance Imaging

MSA-C: multiple system atrophy, cerebellar type

NGS: next-generation sequencing

OCT: optical coherence tomography

SCA: spinocerebellar ataxia

SPG7: spastic paraplegia type 7

VLCF: very long-chain fatty acids

WES: whole-exome sequencing

WGS: whole-genome sequencing