

(ERN-RND)

Neurological Diseases

European Reference Network for rare or low prevalence complex diseases

Network Neuromuscular Diseases (ERN EURO-NMD) DG ,Ataxia and HSP' 10. November 2020

'Rehabilitation in ataxia: current evidence and practice' by Ludger Schöls Hertie Institute for Clinical Brain Research, University of Tübingen, Germany

European Reference Network for RARE Neurological Diseases (ERN-RND)

- Countries with Full Members
- Countries with Affiliated Partners

ERN-RND covers 6 disease groups:

- 1. Ataxia and HSP
- 2. Leukodystrophies
- Dystonias /NBIA/Paroxysmal disorders
- 4. Chorea and HD
- 5. FTD
- 6. Atypical Parkinsonism

DG ,Ataxia and HSP' 10. November 2020

General information about the webinars

- Focus on : RARE neurological, neuromuscular and movement disorders and neurorehabilitation
- 40-45min presentation
- 15min Q&A session at the end (please write your questions in the Q&A)
- Recorded Webinar and presentation to be found at the latest 2 weeks after on: <u>http://www.ern-rnd.eu/education-training/past-webinars/</u>
- Further information: <u>http://www.ern-rnd.eu/disease-knowledge-hub/ataxia/</u>
- Post-webinar survey (2-3min): satisfaction, topic/speaker ideas for next webinars

DG ,Ataxia and HSP' 10. November 2020

ePAG: european Patient Advocacy Groups

Mary Kearney

Friedreich's Ataxia Research Alliance Ireland (FARA) In ERN-RND Patient Advocate for: **Ataxia/HSP**

DG ,Ataxia and HSP' 10. November 2020

Speaker: Ludger Schöls

Training:

- Medical Studies (MD): Universities of Bonn, Tübingen and Edinburgh
- Specialist training (Neurology): Ruhr-University Bochum, Germany
- Habilitation: Clinical and genetic characterization of hereditary ataxias

Current position: Full Professor of Clinical Neurogenetics, University of Tübingen

Other key positions/activities:

- Section head: Hertie-Institute for Clinical Brain Research, Tübingen
- Deputy Director, Dep of Neurology, University of Tübingen
- Speaker: Center for rare neurological diseases, University of Tübingen
- Group leader: German Center for Neurodegenerative Diseases (DZNE), Tübingen
- Clinical coordinator of the European Reference Network for Rare Neurological Diseases (ERN-RND)

Research focus:

- Neurogenetics: discovering genetic causes of neurological diseases & genotype-phenotype analyses
- Translational research: natural history studies, biomarker development & interventional trials. Disease modelling in iPSC-derived neuronal cell models In vitro and in vivo studies of innovative compounds

Webinar outline

- Introduction to cerebellar ataxias
- Studies on physical therapy
- Video-game based training
- Speech treatment
- Adapted physical activities
- Open questions

Learning objectives

By the end of this webinar you will:

- now various beneficial rehab strategies in ataxias
- be able to appraise effects of physical therapy, exergames and speech therapy
- understand factors that influence its success
- be aware of open questions in ataxia rehab

Background of participants

Your expertise in the field of ataxia:

- Ataxia patient or patient advocate
- Physiotherapist
- Neurologist
- Pediatrician
- Others

Ataxia

- Greek (ἀ-ταξία): Out of order
- Key problem: Lack in coordination due to problems in precision and timing of movements
- Affects:
 - Gait
 - Stance
 - Dexterity
 - Articulation
 - Eye movement coordination

Ataxia

- Many causes:
 - Vascular: Cerebellar stroke
 - Autoimmune: e.g. Multiple sclerosis, SREAT, ...
 - Inflammatory: Viral cerebellitis
 - Metabolic: e.g. Vitamin B12, Wilson
 - Toxic: e.g. Alcohol, drugs
 - Tumor
 - Neurodegenerative: MSA-C
 - Hereditary:
 - Many SCA and ARCA genes
 - Numbers still increasing

year of publication

Autosomal recessive ataxia genes

Synofzik, ..., Schöls Neuron 2019

Cerebellar ataxias

Clinical features

- Pure cerebellar ataxia
- Ataxia Plus Syndromes:
 - Non-cerebellar manifestations frequently complicate movement disorder
 - need to be considered in therapy
 - Spasticity
 - Peripheral neuropathy / afferent deficits
 - Parkinsonism
 - Dystonia
 - Tremor
 - Myoclonus

• ...

Neuronal structures

- Purkinje cells / cerebellar cortex:
 e.g. SCA6
- Cerebellar nuclei:

e.g. SCA3

- Spinocerebellar afferent tracts:
 e.g. Friedreich's ataxia
- Olivo-ponto cerebellar affection:
 e.g. MSA-C
- Basal ganglia: e.g. MSA, SCA3

Treatment of ataxias

Ataxia

- Emerging, mechanism-based, causative treatment approaches
- Symptomatic treatment of ataxia:
 - 4-aminopyridine, riluzole?, ...
 - Non-invasive cerebellar stimulation?
 - Prism for diplopia
 - Exercise & rehabilitation

Non-cerebellar symptoms

Don't miss to treat:

- Spasticity
- Dystonia
- Parkinsonism
- Restless legs
- Dysphagia
- Neurogenic bladder disturbances
- Dysaethesia
- Cramps

Key questions

- Can patients with cerebellar ataxias improve their performance by training?
 - Is motor learning still possible if the degenerative process affects the cerebellum as a whole?
 - Which structures are involved / need to be preserved?
 - How does on optimal training concept look like?
- How to measure training effects?
 - Ataxia scores: SARA, ICARS
 - Berg balance scale
 - Falls
 - Goal attainment score
 - ADL, ...

Physical therapy in ataxia

- Which therapy do you recommend in cerebellar ataxias?
 - Vojta
 - Bobath
 - Isometric training
 - Massage / relaxation
 - Falling strategies
 - Vibration
 - Hippotherapy
 - Aqua aerobics
 - Balance training
 - Coordinative training

Fields in rehabilitation

- Physical therapy
 - Videogame-based training
 - Adapted physical activity
- Occupational therapy
- Hippotherapy
- Aqua aerobics
- Speech therapy

"Table Tennis"

Evidence for physical therapy in ataxia

Randomized controlled trials

ſ	Author	Disease	Age (year, mean±SD)	Number of subjects	Intervention	Protocol	Outcome meas- ures	Main results	Follow-up
	Miyai et al. [15] 2012	SCA6, SCA31, ICA	62.5±1.7	42 (21 in each group)	Intensive rehabilitation focusing on coordination, balance and ADLs vs. delayed inter- vention	2 h of physical and occupa- tional therapy on weekdays and 1 h on weekends for 4 weeks	SARA, FIM, gait speed, cadence, FAC and number of falls	Improvements in ataxia, gait speed, and ADLs	Yes (4–12- 24 weeks)
	Rodríguez-Díaz et al. [16] 2018	SCA2	39.52 ± 10.72 for interven- tion group; 38.78 ± 10.53 for control group	38 (19 in each group)	Neurorehabilita- tion therapy focusing on balance, coordination, and strength- ening vs. no intervention	6 h of neurore- habilitation per day on weekdays for 24 weeks	SARA, non-ataxia symptoms and saccadic eye movement variables	Improvements in motor symptoms, especially gait, postural stability, and coordination	No
	Bunn et al. [17] 2015	SCA6	60.2 ± 10.5 for interven- tion group; 58.3 ± 14.5 for control group	12 (6 in each group)	Home balance exercises in front of optokinetic stimuli vs. no intervention	15 min per session, 1 session per day, and 5 days per week for 4 weeks	SARA, standing sway, FIM, FBS, EQ-5D, EQ-VAS, ABC, FSS, VASf	 Training is proven feasible No adverse events reported 	No

Randomized controlled trial

Clinical Research Articles

Cerebellar Ataxia Rehabilitation Trial in Degenerative Cerebellar Diseases

Neurorehabilitation and Neural Repair 26(5) 515-522 © The Author(s) 2012 Reprints and permission:http://www. sagepub.com/journalsPermissions.nav DOI: 10.1177/1545968311425918 http://inr.sagepub.com

Ichiro Miyai, MD, PhD¹, Mizuki Ito, MD, PhD², Noriaki Hattori, MD, PhD^{1,3}, Masahito Mihara, MD, PhD¹, Megumi Hatakenaka, MD, PhD¹, Hajime Yagura, MD, PhD¹, Gen Sobue, MD, PhD², and Masatoyo Nishizawa⁴, for the Cerebellar Ataxia Rehabilitation Trialists Collaboration

- 42 patients (40-82 years) with pure cerebellar ataxia
- Delayed onset design
- 4 weeks inpatient training: 2h coordinative training on working days + 1 h at weekends
- Immediate group with significant improvement in SARA, gait speed + ADL

 Table 3. Long-Term Changes of Outcome Measures After 4-Week Inpatient Rehabilitation in Patients With Degenerative Cerebellar Diseases^a

	Preintervention	Postintervention	4 Weeks	12 Weeks	24 Weeks	<i>P</i> Value
SARA	11.7 (0.6)	9.6 (0.6)***	10.3 (0.6)***	10.7 (0.6)*	11.3 (0.7)	<.001
FIM total	119.3 (0.9)	120.6 (0.8)***	120.2 (0.8)**	119.7 (0.9)	19.2 (1.3)	=.00
FIM motor	85.2 (0.8)	86.4 (0.7)***	86.0 (0.7)**	85.7 (0.8)	85.1 (1.2)	<.00
FIM cognitive	34.1 (0.3)	34.2 (0.3)	34.2 (0.3)	34.0 (0.3)	34.0 (0.3)	NS
Gait speed (m/s)	0.861 (0.050)	0.991 (0.055)***	0.979 (0.055)***	0.963 (0.057)**	0.927 (0.054)	<i>F</i> (4, 156)= 10.8, <.001
Normalized gait speed	1.000 (0)	1.171 (0.034)***	1.156 (0.030)***	1.151 (0.040)**	1.098 (0.032)*	F(4, 156)= 10.2, <.001
Cadence (steps/min)	110.0 (4.3)	13.2 (4.4)	111.8 (4.4)	111.8 (4.4)	110.8 (4.5)	NS
FAC	3.9 (0.2)	4.0 (0.2)**	4.0 (0.2)*	4.1 (0.2)**	4.0 (0.2)	<.01
Falls (times per 4 weeks)	1.5 (0.4)	0.3 (0.1)**	0.8 (0.4)	1.1 (0.4)	1.4 (0.5)	<.005

Abbreviations: SARA, Scale for the Assessment and Rating of Ataxia FIM, Functional Independence Measure; FAC, Functional Ambulation Category; NS, not

Evidence for physical therapy in ataxia

Non-Randomized controlled trials

Author	Type of study	Disease	Age (year, mean \pm SD)	Number of subjects	Intervention	Protocol	Outcome measures	Main results
Ilg et al. [22, 23] 2009 + 2010	Prospective study	SCA2, SCA6, ICA, FA, ADCA, SANDO, ICA with SN	61.4±11.2	16	Coordinative training	4-week intensive coordinative training (3 1-h sessions per week) fol- lowed by home exercises (1 h per day)	SARA, ICARS, BBS, GAS, gait param- eters. static balance test, dynamic bal- ance task	Improvements in motor performance and ataxia symptoms
Keller et al. [24] 2014	study	SCA3, SCA5, SCA6, SCA8, SCA17, ADCA, Spo- radic cerebellar ataxia	52.4±11.5	14	Individualized home-based exercise pro- gram	For most partici- pants: ≥3 days per week for 6 weeks	ICARS, DGI, TUG, FR, ABC, static standing balance, walking speed, stride length	 Improvements in gait and balance No falls
Fonteyn et al. [26] 2014	Prospective study	SCA6, SCA3, SAOA	61.4±5.7	10	Gait adaptability training	1 h per session, and a total of 10 sessions over 5 weeks	SARA, 10MWT, TUG, BBS, the obstacle subtest of EFAP, ABC	Improvements in obstacle avoid- ance capacity and dynamic stability

He et al. J Neurol 2020

Active coordinative training

ARTICLES

Intensive coordinative training improves motor performance in degenerative cerebellar disease

W. Ilg. PhD M. Synofzik, MD D. Brötz S. Burkard M.A. Giese, PhD L. Schöls, MD

Neurology 2009; 73: 1823

Concept by Doris Brötz (Tübingen):

- Active release of "fixed" movement patterns
- Training of static balance
- Training of dynamic balance
- Whole body movements
- Falling strategies and steps to prevent falling
- Movements to treat and prevent contractures
- Rather few exercises but frequent repetitions

Long-Term Effects of Coordinative Training in Degenerative Cerebellar Disease

Winfried Ilg, PhD,¹ Doris Brötz, PT,² Susanne Burkard, PT,³ Martin A. Giese, PhD,¹ Ludger Schöls, MD,^{4*} and Matthis Synofzik, MD⁴

Mov Dis 2010; 25: 2239

Intervention:

- 16 patients (40 79 years)
- 4 weeks course: 3 x physical therapy / week
 = 12 x physical therapy per patient

Active coordinative training

ARTICLES

Intensive coordinative training improves motor performance in degenerative cerebellar disease

W. Ilg, PhD M. Synoffik, MD D. Brötz S. Burkard M.A. Giese, PhD L. Schöls, MD

Neurology 2009; 73: 1823

Results after 4 weeks of training

- Improvement of 5.2 SARA points
 - = natural disease progression in 2–4 years
- Improvement also in
 - Digital movement recordings
 - Berg Balance Scale and
 - Goal attainment scale
- Persistent effect after 12 weeks
- Larger benefit in patients with cerebellar ataxia than afferent ataxia

Active coordinative training

Goal attainment score

ARI	ICL	ES

Intensive coordinative training improves motor performance in degenerative cerebellar disease

W. Ilg. PhD M. Synofiik, MD

D. Brötz S. Burkard M.A. Giese, PhD L. Schöls, MD

Neurology 2009; 73: 1823

Table 2Example for a personally selected goalof the goal attainment score						
Individual go small distanc	al: Walking around a table with e without swaying	Score				
The patient walks around the table mainly by touching the table						
The patient can walk around the table without touching the table most of the time						
The patient c without touch	an walk around the table hing the table	0				
The patient c without touch look around s	an walk around the table hing the table and is able to cometimes	+1				
The patient c without touch look around t	an walk around the table hing the table and is able to he whole time	+2				

Patient	Goal	Score
C1	Walking on a narrow path ($<$ 50 cm)	2
C2	Walking up a staircase without using railway	2
СЗ	Reaching the mailbox in a distance of 600 m without using a walking aid	0
C4	Walking around a table with small distance without swaying	1
C5	Walking without a walking aid over a distance >10 m	1
C6	Walking over a distance of about 300 m without a walking aid or a helping person	2
C7	Walking over a distance of 50 m with a trolley, without bumping with the feet into it	1
C8	Walking free on a small staircase (3 steps) in an alternating way with a distance of 1 m to the railway	-1
C9	Walking with a trolley over a distance of 50 m	0
C10	Walking without a walking aid over a distance of about 100 m	0

Digital movement recording

ARTICLES

Intensive coordinative training improves motor performance in degenerative cerebellar disease

W. Ilg. PhD M. Synofrik, MD D. Brörr S. Burkard M.A. Giese, PhD L. Schöls, MD

Neurology 2009; 73: 1823

Computerized movement analysis

- Recording of 3-dimensional movement trajectories by 41 reflecting markers using a VICON motion capture system
- Analysis of gait, stance, dynamic balance
 - Spatial and temporal variability
 - Variability in intra-limb coordination (hip and knee angles)
 - Center of gravity

Long-term effects

Long-Term Effects of Coordinative Training in Degenerative Cerebellar Disease

Winfried Ilg, PhD,¹ Doris Brötz, PT,² Susanne Burkard, PT,³ Martin A. Giese, PhD,¹ Ludger Schöls, MD,^{4*} and Matthis Synofzik, MD⁴

Mov Dis 2010; 25: 2239

Long-term effects (1 year):

- Training effects persist in part after 1 year
- Effect size correlates with intensity of training at home
- Improvement includes every day functions
- Patients with cerebellar ataxia benefit more than afferent ataxias

CrossMark

Fall prevention

Gait & Posture 40 (2014) 247-251

Gait adaptability training improves obstacle avoidance and dynamic stability in patients with cerebellar degeneration

Ella M.R. Fonteyn ^{a,b}, Anita Heeren ^{c,d}, Jasper-Jan C. Engels ^c, Jasper J. Den Boer ^c, Bart P.C. van de Warrenburg ^{a,*}, Vivian Weerdesteyn ^{c,e}

- Gait adaptability training on obstacle avoidance and dynamic stability during adaptive gait
- 10 patients, 10x1h training in 5 weeks
 - Treadmill with visual stepping targets
 - Obstacles projected on the belt
- Improvement in
 - Obstacle task (EFAP)
 - SARA: 8.7±2.8 → 8.3±2.8
 - Falls: 0.8±1.0 → 0.4±0.7

Evidence for video-based training

Author	Type of study	Disease	Age (year, mean±SD)	Number of sub- jects	Intervention	Type of VR/ VG	Protocol	Outcome measures	Main results	F
Ilg et al. [43] 2012	Prospective study	ADCA, FA, ARCA, AOA2	15.4±3.5	10	Coordinative training based on commer- cial vide- ogames	XBOX Kinect®	2 weeks lab training (4 1-h training ses- sions per week) – 6 weeks home training	SARA, DGI, ABC, motivation scale, gait parameters, goal-directed leg placement task	Improvements in coordina- tion and balance	1
Santos et al. [44] 2017	Prospective study	SCA2, SCA3, SCA4, SCA10, ICA	41.6±16.9	28	Virtual reality- based balance games	Nintendo® Wii	50 min per ses- sion, and 2 ses- sions per week for 10 weeks	DHI, BBS, SF-36	 Improvements in balance and gait, fall frequency, and patients' self-confi- dence No adverse events reported 	7
Schatton et al. [45] 2017	Prospective study	FA, AT, ARCA, AOA1	16.0 ±7.4	10	Coordinative training based on commer- cial vide- ogames	Nintendo Wii® and XBOX Kinect®	2 consecutive 6-week phases of exergam- ing training at home; 45 min per session, 3 times per week	SARA, GAS, quantitative movement analysis	Improvements in postural control and gait ataxia, individual goal attain- ment and sitting-body sway	٦

He et al. J Neurol 2020

Video game-based training

Video game-based coordinative training improves ataxia in children with degenerative ataxia

"Table Tennis" upper extremity

"Light Race"

lower extremity

"20000 Leaks"

upper & lower extremity

- 10 "kids" (11 20ys)
- 2 weeks lab-training + 6 weeks hometrainig with 3 Xbox video games for whole body coordination and dynamic balance
 - Improvement in SARA (2 pts)
 + digital movement recordings
 - Benefit correlated with training intensity
 - Advantages:
 - Cheap
 - At home
 - Fun High motivation
 - Self-empowerment

Video games in advanced ataxia

Parkinsonism and Related Disorders 39 (2017) 80-84

Contents lists available at ScienceDirect Parkinsonism and Related Disorders journal homepage: www.elsevier.com/locate/parkreldis

**

E2

2

Training Intensity [h/week]

2.5

3

3.5

E3

E4

- 10 "kids" (6 29ys; SARA 13 29 pts)
- 2x6 weeks of training with intermediate adaptation for improvement

E 25

- Improvement in SARA (2.5 pts)
- Effect size correlated with training intensity
- Benefit in goal attainment score

Evidence for adapted physical acitivy training

Author	Type of study	Disease	Age (year, mean±SD)	Number of sub- jects	Intervention	Protocol	Outcome measures	Main results
Song et al. [53] 2019	Case study	SCA2	39	1	Partnered tango dance therapy	1 h per session, and 3 times per week for 8 weeks	ICARS, SARA, BBS, FES, BI, gait parameters, the Beck Depres- sion Index, the health-related QOL	Improvements in standing balance, gait, functional mobility, self- reported depres- sion and QOL
Winser et al. [55] 2018	Prospective study	SCA3, SCA6, postinfectious cerebellar degeneration	50.9±6.6	10	Yang style 8-form tai chi	1 h per session, and 3 sessions per week for 12 weeks	BBS, SARAbal, SARA, sensory ratio of soma- tosensory, SOT, LOS, BI	Improvements in balance and ataxia symptoms

Speech therapy in ataxia

Journal of Neurology (2019) 266:1260–1266 https://doi.org/10.1007/s00415-019-09258-4

ORIGINAL COMMUNICATION

Speech treatment improves dysarthria in multisystemic ataxia: a raterblinded, controlled pilot-study in ARSACS

Adam P. Vogel^{1,2,3} · Lisa H. Stoll^{1,4} · Andreas Oettinger⁵ · Natalie Rommel^{1,4} · Eva-Maria Kraus¹ · Dagmar Timmann⁶ · Dion Scott⁷ · Christina Atay⁷ · Elsdon Storey⁸ · Ludger Schöls^{1,9} · Matthis Synofzik^{1,9}

- 7 ARSACS patients (26–58ys; SARA 17–33 pts)
- 4 week program delayed listening feedback + realtime visual feedback + performance feedback

Improvement in:

- Rater blinded assessment of intelligibility
- Naturalness of speech
- Acoustic measures of speech

Intensity of physical therapy

- What training regime do you recommend to a mild to moderate affected patient (SARA: 10 points)?
 - Physical therapy once per week
 - Physical therapy three times per week
 - Home training: 20 minutes/day, 4 days/week
 - Home training: 2 hours/day, 7 days/week
 - Occupational therapy
 - Adapted physical activities

Summary

- Physiotherapy is able to improve balance and coordination as well as daily activities also in degenerative ataxias
- Long-term studies demonstrate long lasting effects
- Studies support training protocols with active exercises
- Training by whole-body controlled video games (exergames) is an enjoyable alternative to classical physiotherapy
- Beneficial effects seem to depend on
 - Intensity of exercise
 - Continuous training is required to preserve benefits

Open questions

- When to start with physiotherapy?
 - Does training in presymptomatic stages of disease delay onset or progression?
- What is the optimal rehab concept?
 - Frequency and duration of training sessions?
 - Predictors of training success?
- Same training program in all stages of disease ?
 - Which compensatory motor learning strategies are preserved in early and late stages?
- Where does motor learning in cerebellar ataxias take place?
 - What is the morphological equivalent of motor learning in ataxias?

Donchin & Timmann Brain 2019

Key Points /Conclusions

- Rehabilitative training is effective in cerebellar ataxias
- Success requires individually tailored rehabilitation program
 - Different training for ambulant and wheelchair bound patients
 - Consider individual preferences to make training enjoyable
- Effect size correlates with training intensity
 - strongly depends on continuous training

Network Neurological Diseases

(ERN-RND)

Joint

european academy of neurology

Network Neuromuscular Diseases (ERN EURO-NMD)

DG ,Ataxia and HSP' 10. November 2020

This webinar has been supported by ERN-RND , which is partly co-funded by the European Union within the framework of the Third Health Programme "ERN-2016 -Framework Partnership Agreement 2017-2021."

Winfried Ilg

Doris Brötz

THANK YOU

Next Webinar:

eries

Matthis Synofzik

, Development of Sara-home: a novel assessment tool for patients

with ataxia' by Gessica Vasco, Susanna Summa 24. November 2020, 15-16h CET