

Pediatric Movement Disorders Series: KMT2B-dystonia

Course Direction Dr. Juan Darío Ortigoza Escobar

Miryam Carecchio, MD, PhD

Assistant Professor of Neurology

Department of Neuroscience University of Padua, Italy ERN-RND center

Dystonia: timeline of genetics

Adapted from: Camargos S. & Cardoso F., 2016

KMT2B gene discovery

Meyer et al., Nat Genet 2016; Zech et al., AJHG 2016

REPORT

6 cases

Haploinsufficiency of *KMT2B*, Encoding the Lysine-Specific Histone Methyltransferase 2B, Results in Early-Onset Generalized Dystonia

Michael Zech,^{1,2} Sylvia Boesch,³ Esther M. Maier,⁴ Ingo Borggraefe,⁴ Katharina Vill,⁴ Franco Laccone,⁵ Veronika Pilshofer,⁶ Andres Ceballos-Baumann,^{2,7} Bader Alhaddad,⁸ Riccardo Berutti,⁹ Werner Poewe,³ Tobias B. Haack,^{8,9,10} Bernhard Haslinger,² Tim M. Strom,^{8,9} and Juliane Winkelmann^{1,2,8,11,*}

Mutations in the histone methyltransferase gene *KMT2B* genetics

Esther Meyer^{1,48}, Keren J Carss^{2,3,48}, Julia Rankin^{4,48}, John M E Nichols^{5,48}, Detelina Grozeva⁶, Agnel P Joseph⁷, Niccolo E Mencacci⁸, Apostolos Papandreou^{1,9}, Joanne Ng^{1,9}, Serena Barral¹, Adeline Ngoh^{1,9}, Hilla Ben-Pazi¹⁰, Michel A Willemsen¹¹, David Arkadir¹², Angela Barnicoat¹³, Hagai Bergman¹⁴, Sanjay Bhate⁹, Amber Boys¹⁵, Niklas Darin¹⁶, Nicola Foulds¹⁷, Nicholas Gutowski¹⁸, Alison Hills¹⁹, Henry Houlden⁸, Jane A Hurst¹³, Zvi Israel²⁰, Margaret Kaminska²¹, Patricia Limousin²², Daniel Lumsden²¹, Shane McKee²³, Shibalik Misra^{24,25}, Shekeeb S Mohammed^{24,25}, Vasiliki Nakou²¹, Joost Nicolai²⁶, Magnus Nilsson²⁷, Hardev Pall²⁸, Kathryn J Peall²⁹, Gregory B Peters³⁰, Prab Prabhakar⁹, Miriam S Reuter³¹, Patrick Rump³², Reeval Segel³³, Margje Sinnema³⁴, Martin Smith³⁵, Peter Turnpenny⁴, Susan M White^{15,36}, Dagmar Wieczorek^{37,38}, Sarah Wiethoff⁸, Brian T Wilson¹³, Gidon Winter¹⁰, Christopher Wragg¹⁹, Simon Pope³⁹, Simon J H Heales^{39,40}, Deborah Morrogh⁴¹, UK10K Consortium⁴², Deciphering Developmental Disorders study⁴², NIHR BioResource Rare Diseases Consortium⁴², Alan Pittman⁸, Lucinda J Carr⁹, Belen Perez-Dueñas^{43,44}, Jean-Pierre Lin²¹, Andre Reis³¹, William A Gahl⁴⁵, Camilo Toro⁴⁵, Kailash P Bhatia²², Nicholas W Wood⁸, Erik-Jan Kamsteeg⁴⁶, Wui K Chong⁴⁷, Paul Gissen⁵, Maya Topf⁷, Russell C Dale^{24,25}, Jonathan R Chubb⁵, F Lucy Raymond^{3,6,49} & Manju A Kurian^{1,9,49}

Received 19 April; accepted 14 November; published online 19 December 2016;

KMT2B - gene structure

- 37 exons, 20 Kb
- Inheritance: autosomal dominant
- Mutations reported: missense, nonsense, frameshift, interstitial deletions at 19q12.13, small in/del

KMT2B - expression

- *KMT2B* encodes a histone lysine methyltransferase involved in methylation of histone H3 at lysine 4 (H3K4) → dysregulation of gene transcription
- Ubiquitously expressed in the brain (++ cerebellar cortex)
- Reduced mRNA transcript in cultured fibroblasts of patients \rightarrow haploinsufficiency

Meyer et al., Nat Genet 2016; Zech et al., AJHG 2016

KMT2s-related human diseases

Rare monoallelic neurodevelopmental disorders:

- Wiedemann-Steiner syndrome (MIM 605130; KMT2A)
- Kleefstra syndrome type 2 (MIM 617768; KMT2C)
- Kabuki syndrome type 1 (MIM 147920; *KMT2D*)
- O'Donnel-Luria-Rodan syndrome (MIM 618512, KMT2E)

Common clinical features: global developmental delay, facial dysmorphic traits, extracentral nervous system developmental defects *De novo* LOF mutations

Main clinical features: dystonia

- Childhood-onset dystonia (mean age at onset 5 years)
- Lower limb onset (21/27) \rightarrow similar to DYT1
- Generalization in almost all patients (24/27), 2-11 yrs after the onset
- Prominent laryngeal, cranial and oro-mandibular dystonia
- Subcortical myoclonus in two cases
- Infection-induced status dystonicus in 1 patient
- Very good response to DBS
- De novo mutations in most cases; ~1/3 microdeletions at 19q13.12 involving KMT2B

Meyer et al., 2017

Additional clinical features

- Microcephaly
- Short stature
- Intellectual disability
- Psychiatric disturbances (4/27)
- Developmental delay
- Epilepsy (2/27)
- Dysmorphic features (elongated face and bulbous nasal tips)

Meyer et al., 2017; Zech et al., 2016

Radiological features

Age-dependent effect?

Subtle, symmetrical hypointensity of the globus pallidi (with a hypointense streak of bilateral globus pallidus externa) on MR images

Meyer et al., 2017

RESEARCH ARTICLE

Frequency and Phenotypic Spectrum of *KMT2B* Dystonia in Childhood: A Single-Center Cohort Study

Miryam Carecchio, MD, PhD,^{1,2,3} ⁽²⁾ Federica Invernizzi, MSc,² Paulina Gonzàlez-Latapi, MD, MSc,⁴ Celeste Panteghini, MSc,² Giovanna Zorzi, MD,¹ Luigi Romito, MD, PhD,⁵ ⁽²⁾ Vincenzo Leuzzi, MD,⁶ Serena Galosi, MD,⁶ Chiara Reale, MSc,² Federica Zibordi, MD,¹ Agnel P. Joseph, PhD,⁷ Maya Topf, PhD,⁷ Carla Piano, MD,⁸ Anna Rita Bentivoglio, MD,⁸ Floriano Girotti, MD,⁵ Paolo Morana, MD,⁹ Benedetto Morana, MD,⁹ Manju A. Kurian, MD, PhD,^{10,11} Barbara Garavaglia, PhD,² Niccolò E. Mencacci, MD, PhD,⁴ Steven J. Lubbe, PhD,⁴ and Nardo Nardocci, MD^{1*}

KMT2B mutations

Carecchio et al., MDJ 2019

No clinical differences between missense mutation carriers and frameshift mutation carriers

Clinical phenotype

- ✓ Mean age at onset: 6.2 years (range 3-13 years)
- ✓ Mean disease duration: 21 years (range 3-42 years)
- ✓ Normal motor milestones in all cases, delayed language in 2/14
- ✓ Dystonia features: Lower limb onset: 78.5% Laryngeal dystonia: 78.5%
 Generalization: 93%
 Oromandibular dystonia: 57%
 Anarthria: 28.5%
- ✓ No brain MRI alterations at any disease stage
- ✓ Mild intellectual disability: 70%
- ✓ Short stature with somatic harmonic development: 64%
- ✓ Minor facial dysmorphisms: 64% → bulbous nasal tips, low-set ears, thin upper lip, mild palpebral ptosis, broad nasal bridge, elongated face
- ✓ **Brisk reflexes** in the lower limbs: 43%

Carecchio et al., MDJ 2019

Incomplete pentrance

Red flags

KMT2B: anarthria

AAO: 7 years (lower limbs) Disease duration: 37 years

KMT2B: severe axial dystonia

Extremely mobile dystonia with severe torsional component

KMT2B: disease history without DBS

AAO: 4 years (lower limbs + larynx) Disease duration: 40 years Anarthria and severe axial dystonia

AAO: 10 years (lower limbs) Disease duration: 42 years Anarthria, severe generalized dystonia

KMT2B: disease history before and after DBS

di Padoya

Intra-familial phenotypic variability

Carecchio et al., 2019

Phenotypic variability

Histone Lysine Methylases and Demethylases in the Landscape of <u>Human Developmental Disorders</u>

Víctor Faundes,^{1,2} William G. Newman,^{1,3} Laura Bernardini,⁴ Natalie Canham,⁵ Jill Clayton-Smith,^{1,3} Bruno Dallapiccola,⁶ Sally J. Davies,⁷ Michelle K. Demos,⁸ Amy Goldman,³ Harinder Gill,⁹ Rachel Horton,¹⁰ Bronwyn Kerr,³ Dhavendra Kumar,⁷ Anna Lehman,⁹ Shane McKee,¹¹ Jenny Morton,¹² Michael J. Parker,¹³ Julia Rankin,¹⁴ Lisa Robertson,¹⁵ I. Karen Temple,¹⁰ Clinical Assessment of the Utility of Sequencing and Evaluation as a Service (CAUSES) Study,⁹ The Deciphering Developmental Disorders (DDD) Study,¹⁶ and Siddharth Banka^{1,3,*}

The American Journal of Human Genetics 102, 1-13, January 4, 2018

Asymptomatic carriers> Isolated ID/short stature > dystonia ±additional features

JAMA Psychiatry | Original Investigation

Diagnostic Yield and Novel Candidate Genes by Exome Sequencing in 152 Consanguineous Families With <u>Neurodevelopmental Disorders</u>

Miriam S. Reuter, MD; Hasan Tawamie, MA; Rebecca Buchert, MA; Ola Hosny Gebril, MD; Tawfiq Froukh, PhD; Christian Thiel, MD; Steffen Uebe, PhD; Arif B. Ekici, PhD; Mandy Krumbiegel, PhD; Christiane Zweier, MD; Juliane Hoyer, MD; Karolin Eberlein, MD; Judith Bauer, MD; Ute Scheller, MD; Tim M. Strom, MD; Sabine Hoffjan, MD; Ehab R. Abdelraouf, MD; Nagwa A. Meguid, MD, PhD; Ahmad Abboud, MD; Mohammed Ayman Al Khateeb, MD; Mahmoud Fakher, MD; Saber Hamdan, MD; Amina Ismael, MD; Safia Muhammad, MD; Ebtessam Abdallah, MD, PhD; Heinrich Sticht, PhD; Dagmar Wieczorek, MD; André Reis, MD; Rami Abou Jamra, MD

> JAMA Psychiatry. 2017;74(3):293-299. doi:10.1001/jamapsychiatry.2016.3798 Published online January 11, 2017.

DBS in KMT2B dystonia

- 18 patients with DBS
- Median age at DBS: 11.5 years (4.5-37)
- Post-surgical follow-up from 0.25 to 22 years
- Significant improvement (BFMDRS-M and BFMDRS-D) evident at 6 months, 1 year and last follow-up
- At 1 year FU >50% of subjects showed BFMDRS-M and BFMDRS-D improvements of >30%
- Beyond 5 years, improvement of >30% was maintained in 5/8 and 3/8 subjects for the BFMDRS-M and BFMDRS-D, respectively
- The greatest BFMDRS-M improvements were observed for trunk (53.2%) and cervical
- (50.5%) dystonia, with less clinical impact on laryngeal dystonia

RESEARCH ARTICLE

Frequency and Phenotypic Spectrum of *KMT2B* Dystonia in Childhood: A Single-Center Cohort Study

Miryam Carecchio, MD, PhD,^{1,2,3} Federica Invernizzi, MSc,² Paulina Gonzàlez-Latapi, MD, MSc,⁴ Celeste Panteghini, MSc,² Giovanna Zorzi, MD,¹ Luigi Romito, MD, PhD,⁵ Vincenzo Leuzzi, MD,⁶ Serena Galosi, MD,⁶ Chiara Reale, MSc,² Federica Zibordi, MD,¹ Agnel P. Joseph, PhD,⁷ Maya Topf, PhD,⁷ Carla Piano, MD,⁸ Anna Rita Bentivoglio, MD,⁸ Floriano Girotti, MD,⁵ Paolo Morana, MD,⁹ Benedetto Morana, MD,⁹ Manju A. Kurian, MD, PhD,^{10,11} Barbara Garavaglia, PhD,² Niccolò E. Mencacci, MD, PhD,⁴ Steven J. Lubbe, PhD,⁴ and Nardo Nardocci, MD^{1*}

• 8 patients with DBS

- Median disease duration 8.5 years
- Median patients' age at surgery 10 years
- Median post-surgery FU: 12 years (range 8-17 yrs)
- Mean long term improvement on BFMDRS-M: 38.5%
- No improvement of laryngeal dystonia

Carecchio et al., MDJ 2019

- 42 individual patients
- mean age at onset 6.4 +/- 5.7 years, 60% F, 40% M
- Median follow-up 12 months (range: 1–264 months)
- Median BFMDRS-M improvement **42.7%**
- Pooled proportion of patients experiencing >50% clinical improvement **41%**
- Male gender (P = 0.004), and higher preoperative BFMDRS-M score (P < 0.001) were independently associated with better outcome

Variable	Coefficient (univariate)	Coefficient (multivariate)		
Male gender	11.50 (-4.50 to 27.50) $P = 0.154$	22.60 (7.95 to 37.26) $P = 0.004$		
Age at onset	-0.12 (-1.49 to 1.26) $P = 0.863$	-1.05 (-20.03 to 17.93) $P = 0.911$)		
Age at DBS	-0.08 (-0.86 to 0.71) $P = 0.843$	1.65 (-17.25 to 20.55) $P = 0.860$		
Duration at DBS	-0.06 (-1.00 to 0.87) $P = 0.891$	-1.83 (-20.73 to 17.08) $P = 0.845$		
Follow up duration	0.01 (-0.09 to 0.12) P = 0.794	0.00 (-0.09 to 0.10) P = 0.931		
Pre-operative BFMDRS-M score	0.46 (0.22 to 0.71) $P < 0.001$	0.62 (0.36 to 0.87) $P < 0.001$		

RESEARCH

Open Access

Ciolfi et al. Clin Epigenet (2021) 13:157 https://doi.org/10.1186/s13148-021-01145-y

Childhood-onset dystonia-causing *KMT2B* variants result in a distinctive genomic hypermethylation profile

Andrea Ciolfi^{1†}, Aidin Foroutan^{2,3†}, Alessandro Capuano⁴, Lucia Pedace⁵, Lorena Travaglini¹, Simone Pizzi¹, Marco Andreani⁵, Evelina Miele⁵, Federica Invernizzi⁶, Chiara Reale⁶, Celeste Panteghini⁶, Maria Iascone⁷, Marcello Niceta¹, Ralitza H. Gavrilova⁸, Laura Schultz-Rogers⁸, Emanuele Agolini⁹, Maria Francesca Bedeschi¹⁰, Paolo Prontera¹¹, Matteo Garibaldi¹², Serena Galosi¹³, Vincenzo Leuzzi¹³, Paola Soliveri¹⁴, Rory J. Olson⁸, Giovanna S. Zorzi¹⁵, Barbara M. Garavaglia⁶, Marco Tartaglia^{1*}¹⁰ and Bekim Sadikovic^{2,3,16*}

KMT2B mutations \rightarrow DNA hypermethylation of promoters and other regulatory regions positively controlling gene expression \rightarrow repression of transcriptional activity

BRAIN COMMUNICATIONS

Adult-onset KMT2B-related dystonia

Edoardo Monfrini,^{1,2} Andrea Ciolfi,³ Francesco Cavallieri,^{4,5} Marco Ferilli,³
Paola Soliveri,^{6,7} Lucia Pedace,⁸ Roberto Erro,⁹ Francesca Del Sorbo,^{6,7} Franco Valzania,⁴
Valentina Fioravanti,⁴ Giovanni Cossu,¹⁰ Maria Pellegrini,¹¹ Leonardo Salviati,¹²
Federica Invernizzi,¹³ Valentina Oppo,¹⁰ Daniela Murgia,¹⁰ Bruno Giometto,¹¹
Marina Picillo,⁹ Barbara Garavaglia,¹³ Francesca Morgante,^{14,15} Marco Tartaglia,³
Miryam Carecchio^{16,17,*} and Alessio Di Fonzo^{2,*}

Table I Clinical and genetic features of KMT2B variants carriers

Family	Subject	Dystonia	Age at onset (dystonia)	Dystonia onset localization	Other localizations	Dystonic tremor	Short stature	Hearing loss	Intellectual disability	KMT2B variant
А	II. I	_	NA	NA	NA	_	_	+	_	c.3232C > T (p.R1078C)
А	II .4	+	69	Blepharospasm	_	_	_	_	_	c.3232C > T (p.R1078C)
А	II .5	+	62	Head	Both arms	+	-	-	_	c.3232C > T (p.R1078C)
А	II .7	-	NA	NA	NA	-	-	+	_	c.3232C > T (p.R1078C)
А	II .8	+	56	Blepharospasm	Neck	-	-	-	_	c.3232C > T (p.R1078C)
А	III.10	-	NA	NA	NA	_	-	+	_	c.3232C > T (p.R1078C)
A	III.11	+	6	Hand	_	-	-	-	_	c.3232C > T (p.R1078C)
В	1.2	-	NA	NA	NA	_	+	-	+	c.7016G > A
										(p.R2339Q)
В	II.3	+	19	Left arm	Larynx, left	-	-	-	_	c.70 1 6G > A
					lower limb					(p.R2339Q)
С	II. I	+	34	Both arms	_	+	-	-	_	c.70 6G > A
										(p.R2339Q)
D	II.2	+	23	Larynx	Face, both	+	-	-	_	c.2909G > A (p.R970Q)
					arms					
E	II .2	+	43	Right arm	_	_	_	_	_	c.1918T > A (p.S640T)

- Adult-onset focal/segmental dystonia
- Dystonic tremor
- Normal development
- Rare additional features
- Intermediate epigenetic signature (methylation profile)

Comparison of methylation episignatures in *KMT2B*- and *KMT2D*-related human disorders

Sunwoo Lee¹, Eguzkine Ochoa¹, Katy Barwick², Laura Cif³, Fay Rodger^{1,4}, France Docquier^{1,4}, Belén Pérez-Dueñas², Graeme Clark^{1,4}, Ezequiel Martin^{1,4}, Siddharth Banka⁵, Manju A Kurian², & Eamonn R Maher^{*,1}

Different methylation pattern between KMT2B dystonia and Kabuki syndrome (KMT2D)

Potential diagnostic relevance in clinical practice!

Università degli Studi di Padova

THANKS FOR YOUR ATTENTION

