

for rare or low prevalence complex diseases

Network Neurological Diseases (ERN-RND)

Introduction to functional MRI & applications to neurological diseases

Edoardo Gioele Spinelli, MD, PhD

Neurology and Neurorehabilitation Units, Dementia Center, and Neuroimaging Research Unit, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy

Disclosures

Dr Spinelli has nothing to disclose

Outline of the presentation / Intro to fMRI

- Basic principles of functional MRI
- fMRI acquisition
- Basic pre-processing steps of fMRI data
- Analysis of task-based fMRI scans
- Analysis of resting state fMRI scans

The BOLD effect

BOLD=Blood Oxygenation Level Dependent

• Several studies showed in fMRI data acquired at rest (i.e., in absence of external stimulation) the presence of spontaneous low-frequency (0.01-0.1 Hz) fluctuations with high temporal coherence between spatially distinct, functionally-related brain regions

• It has been hypothesized that these low-frequency fluctuations reflect an intrinsic property of brain functional organization

The BOLD effect at resting state

Active fMRI visual task

Visual fMRI network at resting state

Cordes et al, AJNR 2000

Outline of the presentation / Intro to fMRI

- Basic principles of functional MRI
- fMRI acquisition
- Basic pre-processing of fMRI data
- Analysis of task-based fMRI scans
- Analysis of resting state fMRI scans

fMRI acquisition

Typical fMRI sequence: T2*-weighted EPI sequence

- Gradient echo
- Several volumes required ⇒ fast acquisition of each volume
 (typical TR=2/3 sec)

Voxel Resolution=3x3x3 mm Whole-brain coverage

Outline of the presentation / Intro to fMRI

- Basic principles of functional MRI
- fMRI acquisition
- Basic pre-processing of fMRI data
- Analysis of task-based fMRI scans
- Analysis of resting state fMRI scans

Motion correction (realignment):

- Subjects move a little over the course of the session
- This can introduce artefacts and a bias in fMRI activity estimation

Normalization to standard space:

- Heads have different shapes and sizes
- fMRI activity is usually calculated in a space that allows group statistics and between-group comparisons
- Non linear warping to Montreal Neurological Institute space

Original image

Normalized image

 Normalization to standard space also allows precise localization of fMRI activity on standard atlases, designed on MNI space coordinates:

E.g. MNI space coordinates (x y z): -43 0 39:

Tzourio-Mazoyer et al., Neuroimage 2002

Smoothing:

- Makes data more normal across space and time
- Increases signal to noise for spatial scale of interest

Before smoothing

After smoothing

Outline of the presentation / Intro to fMRI

- Basic principles of functional MRI
- fMRI acquisition
- Basic pre-processing of fMRI data
- Analysis of task-based fMRI scans
- Analysis of resting state fMRI scans

Task-based fMRI acquisition

Block designs:

• well suited localize to functional areas and to study steady state processes

 powerful in terms of fMRI activity detection

Event-related designs:

 events separated in time by a certain inter-stimulus interval • able to measure transient changes in brain activity flexible, but less • more

powerful than block designs

First-level analysis of task-based fMRI scans

The General Linear Model

For each voxel of the brain, linear regression models assess partial correlation between stimulus time-course and fMRI time course

First-level analysis of task-based fMRI scans

The General Linear Model \Rightarrow Statistical Parametric Mapping

Statistical maps reflect how much each voxel of the brain is likely to be activated by the stimulus task

Outline of the presentation / Intro to fMRI

- Basic principles of functional MRI
- fMRI acquisition
- Basic pre-processing of fMRI data
- Analysis of task-based fMRI scans
- Analysis of resting state fMRI scans

Seed-based resting state functional connectivity

- Choice of the region of interest (ROI)
- Assessment of the correlation between the time series of the seed region and any other time series of the brain: cross-correlation map

Biswal et al., MRM 1995

Independent component analysis

Main ICA-derived functional brain networks

McKeown et al., Hum Brain Mapp 1998

Filippi et al., Hum Brain Mapp 2013

Graph analysis

Brain parcellation

Calculation of general network properties on functional connectivity matrix

Graph analysis

Shortest path lenght

Highest degree

Connector hub

Highest clustering coefficient (its neighbors are all neighbors of each other)

Filippi et al., Lancet Neurol 2013

Outline of the presentation / Applications

• Diagnosis & phenotyping

• Tracking & predicting progression

Network spreading modelling

Multiple Sclerosis / Diagnosis & phenotyping

Multiple Sclerosis / Diagnosis & phenotyping

Effect of phenotype MCC MCC R RRMS HC Precun ACC MCC MCC SFG MTG Put MTG ACC Thal Cer-crus-l ACC ACC MTG MTG OFC TTG Put ITG Cereb Cereb OFC Cer-crus-l Cer-crus-II ITG o(cr I) (cr I) ITG Cereb (cr II) Cereb (cr II) BMS СР MCC MCC MCC MCC ACC Thal Thal Caud Thal MTG Thal MTG Cer-lobule-IV-V ACC MTG ACC MTG Pall OFC SupTP Cer-crus-l ITG OFC Cereb Cer-ITG Cereb OFC Sup TP ITG ITG) (cr I) Cer-crus-II Cer-lobule- crus-ll (cr I) Cereb (cr II) Cer-lobule-VIII Cereb (VIII) VIII **SPMS** CI MCC MCC ACC Thal Thal Ling ACC MTG MTG MTG Ling Put OFC MTG Cereb (cr I) OFC ITG Sup ITG Cer-lobule-IV-V Cereb Cereb (cr I) Cer-TP PHG Cereb (cr II) TG (IV-V)ITG Cer-crus-l Cer- cruslobule-VI Cer-crus-II

Effect of cognitive impairment

ALS / Diagnosis & phenotyping

Basaia et al., Neurology 2020

ALS / Diagnosis & phenotyping

Significant compared with HC

Spinelli et al., in preparation

ALS / Diagnosis & phenotyping

Cividini et al., Neurology 2021

Parkinson's disease / Diagnosis & phenotyping

Tremor dominant vs PIGD PD

Basaia et al., NPJ Parkinsons Dis 2022

Outline of the presentation / Applications

• Diagnosis & phenotyping

• Tracking & predicting progression

Network spreading modelling

Multiple Sclerosis / Predicting progression

Prediction of clinical worsening at 6.4-year follow-up

105/233 MS patients (45%) clinically worsened 26/157 (16%) RRMS patients evolved to SPMS

Predictors of disability worsening						
	Relative importance	р	OOB AUC (95% CI)	р		
Baseline EDSS	100.0	0.001	0.76 (0.69-0.82)	0.009*		
NGMV	73.5	0.001				
NBV	35.7	0.005				
FNC DMN II- DMN III	23.9	0.03				
RS FC SMN II - L precentral gyrus	18.9	0.03				
GM FPN	18.2	0.03				
GM SMN II	16.8	0.04				
GM SN	15.4	0.04				
DMT change	7.9	0.01				

Predictors of SPMS conversion						
	Relative importance	р	OOB AUC (95% CI)	р		
Baseline EDSS	100.0	< 0.001	0.84 (0.76-0.91)	0.02*		
NGMV	99.4	0.001				
GM SMN I	47.7	0.03				
DMT change	14.8	0.002				

*compared to the model including confounding covariates and clinical variables

Rocca et al., Neurol Neuroimmunol Neuroinflamm 2021

Parkinson's disease / Predicting progression

Parkinson's disease / Predicting progression

Freezing of gait

Parkinson's disease / Predicting DBS indications

Functional connectivity in PD candidates for Deep Brain Stimulation Baseline Longitudinal

Could **functional connectivity predict** clinical indications of DBS for PD?

- Occipital hyperconnectivity and/or basal ganglia-sensorimotor/frontal hypoconnectivity
- Progressive increased connectivity between basal ganglia and sensorimotor/frontal areas and decreased connectivity in the posterior regions

Outline of the presentation / Applications

• Diagnosis & phenotyping

• Tracking & predicting progression

Network spreading modelling

Background / The «network-based degeneration» hypothesis

Seeley et al., Neuron 2009

Epicenter

«Target» network

«Off-target» network

Alzheimer's disease / Network spreading modelling

Filippi et al., Mol Psychiatry 2020

Background / Stepwise functional connectivity

"Classic" functional connectivity matrix

Stepwise functional connectivity (SFC)

Frontotemporal dementia / Network spreading modelling

Patterns of atrophy in an independent cohort of path-proven FTD (Mayo Clinic)

FTLD-TDP

Josephs et al., Acta Neuropathol 2011

Frontotemporal dementia / Network spreading modelling

Agosta et al., Neurology 2023 (in press)

Conclusions

- Although fMRI requires extensive image post-acquisition processing, it is a state-of-the-art technique sensitive to alterations in brain activation in taskbased and resting-state settings, both in normal and pathological conditions
- Network analysis provides a powerful method to quantitatively describe the topological organization of brain connectivity
- Disrupted functional connectivities have been associated with several neurodegenerative disorders, including MS, dementia, Parkinson's disease and amyotrophic lateral sclerosis
- These assessments are of special interest for their potential to characterize the signature of each neurodegenerative condition and aid both the diagnostic process and the monitoring of disease progression

Acknowledgments

Neurology and Neurorehabilitation Units, MS Center, Dementia Center, and Neuroimaging Research Unit, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy

