

Network Neurological Diseases (ERN-RND)

#### ERN-RND Winter School 2023 - 'NEUROIMAGING' Online, 23-25. March 2023, Times in CET







# Ataxia and HSP

Sirio Cocozza, MD, PhD

NeuroN Lab Department of Advanced Biomedical Sciences, University "Federico II", Naples, Italy



### Learning objectives



- Identify common imaging features
- Understand the recommended sequences
- Recognize the MRI patterns in the respective disease(s)
- Interpret and apply the results of neuroimaging accurately in the clinical context







- Anatomy
- Conventional MRI Sequences
- Conventional MRI findings in main hereditary ataxias
- Neuroradiological diagnostic algorithm

## Brain anatomy





### Cerebellar anatomy (1)





- Three layers: Molecular layer, Purkinje cell layer, granular layer

### Cerebellar anatomy (2)





- Three lobes:

Anterior, Posterior and Flocculonodular







- Three nuclei: Fastigial, Interposed (emboliform + globose nuclei) and Dentate nuclei

### Cerebellar anatomy (4)





- Three peduncles: superior, middle and inferior

## Cerebellar anatomy (5)













- Fastigial nucleus
- Interposed nucleus (emboliform + globose nuclei)
- Dentate nucleus



![](_page_11_Picture_0.jpeg)

### Midbrain

![](_page_11_Picture_2.jpeg)

![](_page_11_Figure_3.jpeg)

![](_page_12_Picture_0.jpeg)

### Midbrain

- Cerebral peduncles
- Substantia Nigra
- Red Nucelus
- Quadrigeminal plate

![](_page_12_Picture_6.jpeg)

![](_page_12_Picture_7.jpeg)

![](_page_13_Picture_0.jpeg)

### Pons

![](_page_13_Picture_2.jpeg)

![](_page_13_Figure_3.jpeg)

![](_page_14_Picture_0.jpeg)

### Pons

![](_page_14_Picture_2.jpeg)

![](_page_14_Picture_3.jpeg)

![](_page_14_Figure_4.jpeg)

![](_page_14_Picture_5.jpeg)

![](_page_14_Picture_6.jpeg)

![](_page_14_Picture_7.jpeg)

![](_page_15_Picture_0.jpeg)

### Medulla

![](_page_15_Picture_2.jpeg)

![](_page_15_Picture_3.jpeg)

![](_page_16_Picture_0.jpeg)

### Medulla

- Pyramids
- Olives
- Inferior cerebellar peduncles

![](_page_16_Picture_5.jpeg)

![](_page_16_Picture_6.jpeg)

![](_page_16_Picture_7.jpeg)

![](_page_16_Picture_8.jpeg)

![](_page_16_Picture_9.jpeg)

![](_page_17_Picture_0.jpeg)

![](_page_17_Picture_1.jpeg)

![](_page_17_Picture_2.jpeg)

#### Anatomy

- Conventional MRI Sequences
- Conventional MRI findings in main hereditary ataxias
- Neuroradiological diagnostic algorithm

**Conventional MRI sequences** 

![](_page_18_Picture_1.jpeg)

### - T1-weighted

#### - T2-weighted

#### - DWI

- SWI

![](_page_18_Picture_6.jpeg)

![](_page_18_Picture_7.jpeg)

![](_page_18_Picture_8.jpeg)

![](_page_18_Picture_9.jpeg)

![](_page_18_Picture_10.jpeg)

![](_page_19_Picture_0.jpeg)

![](_page_19_Picture_1.jpeg)

- T1-weighted

### Ideally: all sequences, all planes!

- T2-weighted

## **Conventional MRI sequences**

![](_page_20_Picture_1.jpeg)

### - T1-weighted

32

#### - T2-weighted

![](_page_20_Picture_4.jpeg)

"Gray is gray, white is white"

![](_page_21_Picture_0.jpeg)

### **Conventional MRI sequences**

![](_page_22_Picture_1.jpeg)

#### "Gray is white, white is gray"

#### - T2-weighted

32

60

![](_page_23_Picture_0.jpeg)

![](_page_23_Picture_1.jpeg)

### - T2-weighted

![](_page_23_Picture_3.jpeg)

![](_page_23_Picture_4.jpeg)

![](_page_23_Picture_5.jpeg)

![](_page_23_Picture_6.jpeg)

![](_page_23_Picture_7.jpeg)

![](_page_24_Picture_0.jpeg)

![](_page_25_Picture_0.jpeg)

![](_page_26_Picture_0.jpeg)

![](_page_27_Picture_0.jpeg)

### HA: classification

![](_page_28_Picture_1.jpeg)

#### -Three major groups: acquired, sporadic and hereditary ataxias <sup>1</sup>

#### Table 1 Autosomal recessive ataxias: molecular genetics

| Disorder                                                       | Gene product                             | Function                                                                              |
|----------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------|
| Mitochondrial/oxidative stress                                 |                                          |                                                                                       |
| FRDA                                                           | Frataxin                                 | Synthesis of iron sulphur clusters                                                    |
| MIRAS                                                          | POLG                                     | Mitochondrial DNA proofreading                                                        |
| IOSCA                                                          | Twinkle                                  | Mitochondrial DNA proofreading                                                        |
| Autosomal recessive cerebellar<br>ataxia type 2 (ARCA2, SCAR9) | ADCK3                                    | Coenzyme Q10 synthesis                                                                |
| AVED                                                           | α-Tocopherol transport protein           | Vitamin E                                                                             |
| Abetalipoproteinemia                                           | Microsomal triglyceride transfer protein | Vitamin E                                                                             |
| DNA repair                                                     |                                          |                                                                                       |
| AT                                                             | ATM protein                              | Phosphoinositol-3 kinase activity:<br>cell cycle checkpoint control<br>and DNA repair |
| ATLD                                                           | MRE11                                    | Double-strand DNA repair                                                              |
| AOA1                                                           | Aprataxin                                | Single-strand DNA repair                                                              |
| Ataxia with oculomotor apraxia<br>type 2 (AOA2, SCAR2)         | Senataxin                                | Single-strand DNA repair                                                              |
| SCAN1                                                          | TDP1                                     | DNA replication                                                                       |
| Other mechanisms                                               |                                          |                                                                                       |
| Refsum disease                                                 | Phytanoyl-CoA hydroxylase                | Oxidation of phytanic acid                                                            |
| CTX                                                            | Sterol-27 hydroxylase                    | Sterol hydroxylation                                                                  |
| ARSACS                                                         | Sacsin                                   | Proteasomal system                                                                    |
| Ataxia and motor neuropathy 2                                  | ANO10                                    | Channel dysfunction                                                                   |
| Ataxia with epilepsy and mental retardation                    | Rundataxin                               | Unknown                                                                               |
| MSS                                                            | SIL1                                     | ER glycoprotein                                                                       |
| Autosomal recessive cerebellar ataxia<br>type 1 (ARCA1, SCAR8) | SYNE1                                    | Member of spectrin family                                                             |
| PHARC                                                          | ABHD12                                   | Endocannabinoid metabolism:<br>hydrolysis 2-arachidonoyl glycerol (2-AG)              |

ANO10, anoctamin 10; AOA1, ataxia with oculomotor apraxia type 1; ARSACS, autosomal recessive spastic ataxia of Charlevoix–Saguenay; AT, ataxia telangiectasia; ATLD, ataxia telangiectasia-like disorder; AVED, ataxia with isolated vitamin E deficiency; CTX, cerebrotendinous xanthomatosis; ER, endoplasmic reticulum; FRDA, Friedreich ataxia; IOSCA, infantile onset spinocerebellar ataxia; MIRAS, mitochondrial recessive ataxia syndrome; MSS, Marinesco–Sjögren syndrome; PHARC, polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and cataract. POLG, polymerase gamma; SCAN1, spinocerebellar ataxia with axonal neuropathy 1; TDP1, tyrosyl-DNA phosphodiesterase-1. Table 2 Spinocerebellar ataxias: molecular genetics and clinical phenotype

| Disorder | Mutation                                             | Gene product                         | Clinical phenotype                                                                           |
|----------|------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------|
| SCA1     | Translated CAG repeat expansion                      | Ataxin-1                             | Ataxia, pyramidal signs, neuropathy,                                                         |
| SCA2     | Translated CAG repeat expansion                      | Ataxin-2                             | Ataxia, slow saccades, neuropathy,<br>restless legs syndrome                                 |
| SCA3/MJD | Translated CAG repeat expansion                      | Ataxin-3                             | Ataxia, pyramidal signs, ophthalmoplegia,<br>neuropathy, dystonia, restless legs<br>syndrome |
| SCA4     | Unknown                                              | Unknown                              | Ataxia, sensory neuropathy                                                                   |
| SCA5     | Point mutation                                       | Beta-III spectrin (SPTBN2)           | Almost purely cerebellar ataxia                                                              |
| SCA6     | Translated CAG repeat expansion                      | Calcium channel subunit<br>(CACNA1A) | Almost purely cerebellar ataxia                                                              |
| SCA7     | Translated CAG repeat expansion                      | Ataxin-7                             | Ataxia, ophthalmoplegia, visual loss                                                         |
| SCA8     | 3' Untranslated CTG repeat expansion                 | Ataxin-8                             | Ataxia, sensory neuropathy, spasticity                                                       |
| SCA10    | Intronic ATTCT repeat expansion                      | Ataxin-10                            | Ataxia, epilepsy                                                                             |
| SCA11    | Insertion, deletion                                  | TTBK2                                | Almost purely cerebellar ataxia                                                              |
| SCA12    | 5' Untranslated CAG repeat expansion                 | Phosphatase subunit<br>(PP2A-PR556)  | Ataxia, tremor                                                                               |
| SCA13    | Point mutation                                       | Potassium channel (KCNC3)            | Ataxia, mental retardation                                                                   |
| SCA14    | Point mutation                                       | PKCy                                 | Ataxia, myoclonus, dystonia, sensory loss                                                    |
| SCA15/16 | Deletion                                             | ITPR1                                | Almost purely cerebellar ataxia                                                              |
| SCA17    | Translated CAG repeat expansion                      | TBP                                  | Ataxia, dystonia, chorea, dementia,<br>psychiatric abnormalities                             |
| SCA18    | Unknown                                              | Unknown                              | Ataxia, sensory neuropathy,<br>neurogenic muscle atrophy                                     |
| SCA19/22 | Unknown                                              | Unknown                              | Ataxia, myoclonus, cognitive impairment                                                      |
| SCA20    | Unknown                                              | Unknown                              | Ataxia, dysphonia                                                                            |
| SCA21    | Unknown                                              | Unknown                              | Ataxia, parkinsonism                                                                         |
| SCA23    | Missense                                             | PDYN                                 | Ataxia, sensory neuropathy, pyramidal signs                                                  |
| SCA25    | Unknown                                              | Unknown                              | Ataxia, sensory neuropathy                                                                   |
| SCA26    | Unknown                                              | Unknown                              | Almost purely cerebellar ataxia                                                              |
| SCA27    | Point mutation                                       | FGF14                                | Ataxia, tremor, mental retardation                                                           |
| SCA28    | Missense                                             | AFG3L2                               | Ataxia, opthalmoparesis, pyramidal signs                                                     |
| SCA30    | Unknown                                              | Unknown                              | Almost purely cerebellar ataxia                                                              |
| SCA31    | Intronic pentanucleotide (TGGAA)<br>repeat insertion | BEAN                                 | Almost purely cerebellar ataxia                                                              |
| SCA-TGM6 | Missense                                             | TGM6                                 | Ataxia, pyramidal signs                                                                      |

AFG3L2, ATPase family gene 3-like 2; BEAN, brain expressed associated with NEDD-4; FGF14, fibroblast growth factor 14; ITPR1, inositol 1,4,5triphosphate receptor, type 1; MJD, Machado–Joseph disease; PDYN, prodynorphin; PKCy, protein kinase C y; SCAs, spinocerebellar ataxias; TBP, TATA binding protein; TGM6, transglutaminase 6; TTBK2, tau tubulin kinase 2.

![](_page_29_Picture_0.jpeg)

#### <sup>1</sup> Mascalchi M. AJNR Am J Neuroradiol 2013

![](_page_30_Picture_0.jpeg)

![](_page_30_Picture_1.jpeg)

![](_page_30_Picture_2.jpeg)

![](_page_30_Picture_3.jpeg)

![](_page_30_Picture_4.jpeg)

![](_page_30_Picture_5.jpeg)

![](_page_31_Picture_0.jpeg)

### **Conventional MRI: SCA2**

![](_page_31_Picture_2.jpeg)

Significant diffuse cerebellar + pontine atrophy + cruciform pontine
T2-hyperintensity ("hot cross bun" sign) reported, due to ponto cerebellar fibers degeneration <sup>1</sup>

![](_page_32_Picture_0.jpeg)

### **Conventional MRI: SCA1**

![](_page_32_Picture_2.jpeg)

- Olivo-ponto-cerebellar atrophy with a similar distribution but less severe than SCA2  $^{\rm 1}$ 

![](_page_32_Picture_4.jpeg)

![](_page_33_Picture_0.jpeg)

### HCB sign

![](_page_34_Picture_1.jpeg)

Mario Savoiardo, MD • Liliana Strada, MD • Floriano Girotti, MD • Robert A. Zimmerman, MD • Marina Grisoli, MD • Daniela Testa, MD • Raffaele Petrillo, MD

#### Olivopontocerebellar Atrophy: MR Diagnosis and Relationship to Multisystem Atrophy<sup>1</sup>

![](_page_34_Picture_4.jpeg)

![](_page_35_Figure_0.jpeg)

Shuzhen Z, et al. Frontiers in Aging Neuroscience 2020

### HCB sign in SCAs

![](_page_36_Picture_1.jpeg)

![](_page_36_Picture_2.jpeg)

SCA1

![](_page_36_Figure_4.jpeg)

SCA3

![](_page_37_Picture_0.jpeg)

### **Conventional MRI: SCA3**

![](_page_37_Picture_2.jpeg)

- Variable degree of ponto-cerebellar atrophy, less severe compared to the one found in SCA1 and SCA2  $^{\rm 1}$ 

![](_page_37_Picture_4.jpeg)

![](_page_38_Picture_0.jpeg)

![](_page_38_Picture_1.jpeg)

- Superior vermis atrophy + linear pontine T2w hypointensities + thickened MCP + bilateral parietal atrophy <sup>1</sup>

![](_page_38_Picture_3.jpeg)

![](_page_39_Picture_0.jpeg)

### **Conventional MRI: AT**

![](_page_39_Picture_2.jpeg)

#### - Mainly vermian atrophy + supratentorial SWI hypointensities <sup>1</sup>

![](_page_39_Picture_4.jpeg)

![](_page_40_Picture_0.jpeg)

### **Conventional MRI: CTX**

![](_page_40_Picture_2.jpeg)

 Variable degree of cerebral and cerebellar atrophy + SWI hypointensity & non-homogeneous T2w hyperintensity signal in dentate nuclei and surrounding cerebellar white matter (vacuolization + calcification) <sup>1</sup>

![](_page_40_Picture_4.jpeg)

![](_page_41_Picture_0.jpeg)

### **Conventional MRI: FXTAS**

![](_page_41_Picture_2.jpeg)

- Two major radiological features (white matter lesions in middle cerebellar peduncles and in corpus callosum splenium) <sup>1</sup> are part of the revised FXTAS diagnostic criteria <sup>1</sup>

![](_page_41_Picture_4.jpeg)

<sup>1</sup> Cocozza S, et al. Neuroradiology 2021 ; <sup>2</sup> Hall DA, et al. Neurodev Disord. 2014

![](_page_42_Picture_0.jpeg)

![](_page_42_Picture_1.jpeg)

#### - Pattern of atrophy

![](_page_43_Picture_0.jpeg)

Conventional MRI "checklist"

- Pattern of atrophy

"Pure" cerebellar

Mainly vermian Mainly hemispheric Diffuse

Cerebellar + brainstem Mainly pontine Pontine + Midbrain

Diffuse

- Infratentorial signal changes

- Supratentorial involvement (atrophy and/or signal changes)

![](_page_44_Figure_0.jpeg)

![](_page_45_Figure_0.jpeg)

![](_page_46_Figure_0.jpeg)

![](_page_47_Figure_0.jpeg)

![](_page_48_Figure_0.jpeg)

![](_page_49_Picture_0.jpeg)

### Neuroradiological algorithm

![](_page_49_Picture_2.jpeg)

Cerebellar and brainstem atrophy

"Pure" cerebellar atrophy

![](_page_50_Figure_0.jpeg)

![](_page_51_Figure_0.jpeg)

![](_page_52_Figure_0.jpeg)

![](_page_53_Figure_0.jpeg)

![](_page_54_Figure_0.jpeg)

![](_page_55_Figure_0.jpeg)

![](_page_56_Figure_0.jpeg)

![](_page_57_Figure_0.jpeg)

![](_page_58_Figure_0.jpeg)

![](_page_59_Figure_0.jpeg)

![](_page_60_Figure_0.jpeg)

![](_page_61_Figure_0.jpeg)

![](_page_62_Picture_0.jpeg)

### Take home messages

![](_page_62_Picture_2.jpeg)

- With conventional MRI it is possible to study almost all the structures of the infratentorial compartment

- 3D-GrE-T1w >>> SE-T1w
- TSE-T2w > FLAIR-T2w
- Lack of "pathognomonic" MRI signs (unfortunately)

- Accurate evaluation and combination of different conventional MRI signs might provide crucial diagnostic information

#### e-mail: sirio.cocozza@unina.it

![](_page_63_Picture_1.jpeg)

![](_page_63_Picture_2.jpeg)